Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38375885

RESUMO

Pseudouridine, one of the most abundant RNA modifications, is synthesized by stand-alone or RNA-guided pseudouridine synthases. Here, we comprehensively mapped pseudouridines in rRNAs, tRNAs and small RNAs in the archaeon Sulfolobus islandicus and identified Cbf5-associated H/ACA RNAs. Through genetic deletion and in vitro modification assays, we determined the responsible enzymes for these modifications. The pseudouridylation machinery in S. islandicus consists of the stand-alone enzymes aPus7 and aPus10, and six H/ACA RNA-guided enzymes that account for all identified pseudouridines. These H/ACA RNAs guide the modification of all eleven sites in rRNAs, two sites in tRNAs, and two sites in CRISPR RNAs. One H/ACA RNA shows exceptional versatility by targeting eight different sites. aPus7 and aPus10 are responsible for modifying positions 13, 54 and 55 in tRNAs. We identified four atypical H/ACA RNAs that lack the lower stem and the ACA motif and confirmed their function both in vivo and in vitro. Intriguingly, atypical H/ACA RNAs can be modified by Cbf5 in a guide-independent manner. Our data provide the first global view of pseudouridylation in archaea and reveal unexpected structures, substrates, and activities of archaeal H/ACA RNPs.

2.
Sci China Life Sci ; 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38041781

RESUMO

Box C/D RNAs guide the site-specific formation of 2'-O-methylated nucleotides (Nm) of RNAs in eukaryotes and archaea. Although C/D RNAs have been profiled in several archaea, their targets have not been experimentally determined. Here, we mapped Nm in rRNAs, tRNAs, and abundant small RNAs (sRNAs) and profiled C/D RNAs in the crenarchaeon Sulfolobus islandicus. The targets of C/D RNAs were assigned by analysis of base-pairing interactions, in vitro modification assays, and gene deletion experiments, revealing a complicated landscape of C/D RNA-target interactions. C/D RNAs widely use dual antisense elements to target adjacent sites in rRNAs, enhancing modification at weakly bound sites. Two consecutive sites can be guided with the same antisense element upstream of box D or D', a phenomenon known as double-specificity that is exclusive to internal box D' in eukaryotic C/D RNAs. Several C/D RNAs guide modification at a single non-canonical site. This study reveals the global landscape of RNA-guided 2'-O-methylation in an archaeon and unexpected targeting rules employed by C/D RNA.

3.
Sci China Life Sci ; 66(1): 2-11, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36385591

RESUMO

Polyamines have been discovered for hundreds of years and once considered as a class of phytohormones. Polyamines play critical roles in a range of developmental processes. However, the molecular mechanisms of polyamine signaling pathways remain poorly understood. Here, we measured the contents of main types of polyamines, and found that endogenous level of thermospermine (T-Spm) in Arabidopsis thaliana is comparable to those of classic phytohormones and is significantly lower than those of putrescine (Put), spermidine (Spd), and spermine (Spm). We further found a nodule-like structure around the junction area connecting the shoot and root of the T-Spm biosynthetic mutant acl5 and obtained more than 50 suppressors of acl5nodule structure (san) through suppressor screening. An in-depth study of two san suppressors revealed that NAP57 and NOP56, core components of box H/ACA and C/D snoRNPs, were essential for T-Spm-mediated nodule-like structure formation and plant height. Furthermore, analyses of rRNA modifications showed that the overall levels of pseudouridylation and 2'-O-methylation were compromised in san1 and san2 respectively. Taken together, these results establish a strong genetic relationship between rRNA modification and T-Spm-mediated growth and development, which was previously undiscovered in all organisms.


Assuntos
Arabidopsis , Espermina , Espermina/metabolismo , Arabidopsis/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Poliaminas/metabolismo
4.
Autophagy ; 19(4): 1359-1360, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36095070

RESUMO

In selective macroautophagy/autophagy, autophagy receptors are key molecules that determine cargo specificity. Most known autophagy receptors only exist in some but not all eukaryotic lineages. The exception is Nbr1 proteins, which are conserved across eukaryotes. The four-tryptophan (FW) domain is the hallmark of Nbr1 proteins, but its function has been unknown. Our recent study found that the FW domain in the Nbr1 protein of the filamentous fungus Chaetomium thermophilum binds the α-mannosidase Ams1, a known selective autophagy cargo in budding yeast and fission yeast. Furthermore, we showed that when C. thermophilum Nbr1 and Ams1 are expressed heterologously in fission yeast, FW domain-mediated binding can promote autophagic delivery of Ams1 into vacuoles. We solved the structure of the FW-Ams1 complex and revealed the structural mechanism underlying Ams1 recognition by the FW domain. The N-terminal di-glycine peptide of Ams1 fits into a conserved pocket of the FW domain. We propose that this cargo-binding mechanism may also be employed by Nbr1 proteins in other eukaryotes.


Assuntos
Autofagia , Schizosaccharomyces , Autofagia/fisiologia , Schizosaccharomyces/metabolismo , Proteínas/metabolismo , Proteínas de Transporte/metabolismo , Vacúolos/metabolismo
5.
RNA ; 28(12): 1597-1605, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36127125

RESUMO

Box C/D RNAs guide site-specific 2'-O-methylation of RNAs in archaea and eukaryotes. The defining feature of methylation guide RNAs is two sets of box C and D motifs that form kink-turn structures specifically recognized by L7Ae family proteins. Here, we engineered a new type of methylation guide that lacks C/D motifs and requires no L7Ae for assembly and function. We determined a crystal structure of a bipartite C/D-free guide RNA in complex with Nop5, fibrillarin and substrate in the active form at 2.2 Å resolution. The stems of new guide RNAs functionally replace C/D motifs in Nop5 binding, precisely placing the substrate for site-specific modification. We also found that the bipartite architecture and association of L7Ae with C/D motifs enhance modification when association of guide RNAs or substrates is weak. Our study provides insights into the variations, robustness and possible evolutionary path of methylation guide RNAs.


Assuntos
RNA Arqueal , RNA Guia de Cinetoplastídeos , RNA Arqueal/genética , RNA Guia de Cinetoplastídeos/genética , Metilação , Sequência de Bases , RNA/genética , RNA/metabolismo , RNA Nucleolar Pequeno/genética , Conformação de Ácido Nucleico
6.
Plant Cell ; 34(11): 4173-4190, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36005862

RESUMO

Small nucleolar RNAs (snoRNAs) are noncoding RNAs (ncRNAs) that guide chemical modifications of structural RNAs, which are essential for ribosome assembly and function in eukaryotes. Although numerous snoRNAs have been identified in plants by high-throughput sequencing, the biological functions of most of these snoRNAs remain unclear. Here, we identified box C/D SnoR28.1s as important regulators of plant growth and development by screening a CRISPR/Cas9-generated ncRNA deletion mutant library in Arabidopsis thaliana. Deletion of the SnoR28.1 locus, which contains a cluster of three genes producing SnoR28.1s, resulted in defects in root and shoot growth. SnoR28.1s guide 2'-O-ribose methylation of 25S rRNA at G2396. SnoR28.1s facilitate proper and efficient pre-rRNA processing, as the SnoR28.1 deletion mutants also showed impaired ribosome assembly and function, which may account for the growth defects. SnoR28 contains a 7-bp antisense box, which is required for 2'-O-ribose methylation of 25S rRNA at G2396, and an 8-bp extra box that is complementary to a nearby rRNA methylation site and is partially responsible for methylation of G2396. Both of these motifs are required for proper and efficient pre-rRNA processing. Finally, we show that SnoR28.1s genetically interact with HIDDEN TREASURE2 and NUCLEOLIN1. Our results advance our understanding of the roles of snoRNAs in Arabidopsis.


Assuntos
Arabidopsis , RNA de Plantas , RNA Nucleolar Pequeno , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Ribose/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , Metilação , Processamento Pós-Transcricional do RNA , RNA de Plantas/genética , RNA de Plantas/metabolismo
7.
Nat Commun ; 13(1): 3650, 2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35752625

RESUMO

Neighbor of BRCA1 (Nbr1) is a conserved autophagy receptor that provides cargo selectivity to autophagy. The four-tryptophan (FW) domain is a signature domain of Nbr1, but its exact function remains unclear. Here, we show that Nbr1 from the filamentous fungus Chaetomium thermophilum uses its FW domain to bind the α-mannosidase Ams1, a cargo of selective autophagy in both budding yeast and fission yeast, and delivers Ams1 to the vacuole by conventional autophagy in heterologous fission yeast. The structure of the Ams1-FW complex was determined at 2.2 Å resolution by cryo-electron microscopy. The FW domain adopts an immunoglobulin-like ß-sandwich structure and recognizes the quaternary structure of the Ams1 tetramer. Notably, the N-terminal di-glycine of Ams1 is specifically recognized by a conserved pocket of the FW domain. The FW domain becomes degenerated in fission yeast Nbr1, which binds Ams1 with a ZZ domain instead. Our findings illustrate the protein binding mode of the FW domain and reveal the versatility of Nbr1-mediated cargo recognition.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces , Autofagia/fisiologia , Proteínas de Transporte/metabolismo , Microscopia Crioeletrônica , Proteínas/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Vacúolos/metabolismo
8.
Nat Commun ; 13(1): 1468, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35304446

RESUMO

Chemical cross-linking of proteins coupled with mass spectrometry is widely used in protein structural analysis. In this study we develop a class of non-hydrolyzable amine-selective di-ortho-phthalaldehyde (DOPA) cross-linkers, one of which is called DOPA2. Cross-linking of proteins with DOPA2 is 60-120 times faster than that with the N-hydroxysuccinimide ester cross-linker DSS. Compared with DSS cross-links, DOPA2 cross-links show better agreement with the crystal structures of tested proteins. More importantly, DOPA2 has unique advantages when working at low pH, low temperature, or in the presence of denaturants. Using staphylococcal nuclease, bovine serum albumin, and bovine pancreatic ribonuclease A, we demonstrate that DOPA2 cross-linking provides abundant spatial information about the conformations of progressively denatured forms of these proteins. Furthermore, DOPA2 cross-linking allows time-course analysis of protein conformational changes during denaturant-induced unfolding.


Assuntos
Desdobramento de Proteína , o-Ftalaldeído , Reagentes de Ligações Cruzadas/química , Espectrometria de Massas/métodos , Conformação Proteica , Soroalbumina Bovina/química
9.
RNA ; 28(3): 390-399, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34916333

RESUMO

Characterization of RNA-protein interaction is fundamental for understanding the metabolism and function of RNA. UV crosslinking has been widely used to map the targets of RNA-binding proteins, but is limited by low efficiency, requirement for zero-distance contact, and biases for single-stranded RNA structure and certain residues of RNA and protein. Here, we report the development of an RNA-protein crosslinker (AMT-NHS) composed of a psoralen derivative and an N-hydroxysuccinimide ester group, which react with RNA bases and primary amines of protein, respectively. We show that AMT-NHS can penetrate into living yeast cells and crosslink Cbf5 to H/ACA snoRNAs with high specificity. The crosslinker induced different crosslinking patterns than UV and targeted both single- and double-stranded regions of RNA. The crosslinker provides a new tool to capture diverse RNA-protein interactions in cells.


Assuntos
Reagentes de Ligações Cruzadas/síntese química , RNA Nucleolar Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ficusina/química , Ligação Proteica , RNA Nucleolar Pequeno/química , Proteínas de Ligação a RNA/química , Saccharomyces cerevisiae
10.
EMBO J ; 40(15): e107497, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34169534

RESUMO

In selective autophagy, cargo selectivity is determined by autophagy receptors. However, it remains scarcely understood how autophagy receptors recognize specific protein cargos. In the fission yeast Schizosaccharomyces pombe, a selective autophagy pathway termed Nbr1-mediated vacuolar targeting (NVT) employs Nbr1, an autophagy receptor conserved across eukaryotes including humans, to target cytosolic hydrolases into the vacuole. Here, we identify two new NVT cargos, the mannosidase Ams1 and the aminopeptidase Ape4, that bind competitively to the first ZZ domain of Nbr1 (Nbr1-ZZ1). High-resolution cryo-EM analyses reveal how a single ZZ domain recognizes two distinct protein cargos. Nbr1-ZZ1 not only recognizes the N-termini of cargos via a conserved acidic pocket, similar to other characterized ZZ domains, but also engages additional parts of cargos in a cargo-specific manner. Our findings unveil a single-domain bispecific mechanism of autophagy cargo recognition, elucidate its underlying structural basis, and expand the understanding of ZZ domain-mediated protein-protein interactions.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação , Domínios Proteicos , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética
11.
Nucleic Acids Res ; 49(7): 4104-4119, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33784398

RESUMO

Eukaryotic rRNAs and snRNAs are decorated with abundant 2'-O-methylated nucleotides (Nm) that are predominantly synthesized by box C/D snoRNA-guided enzymes. In the model plant Arabidopsis thaliana, C/D snoRNAs have been well categorized, but there is a lack of systematic mapping of Nm. Here, we applied RiboMeth-seq to profile Nm in cytoplasmic, chloroplast and mitochondrial rRNAs and snRNAs. We identified 111 Nm in cytoplasmic rRNAs and 19 Nm in snRNAs and assigned guide for majority of the detected sites using an updated snoRNA list. At least four sites are directed by guides with multiple specificities as shown in yeast. We found that C/D snoRNAs frequently form extra pairs with nearby sequences of methylation sites, potentially facilitating the substrate binding. Chloroplast and mitochondrial rRNAs contain five almost identical methylation sites, including two novel sites mediating ribosomal subunit joining. Deletion of FIB1 or FIB2 gene reduced the accumulation of C/D snoRNA and rRNA methylation with FIB1 playing a bigger role in methylation. Our data reveal the comprehensive 2'-O-methylation maps for Arabidopsis rRNAs and snRNAs and would facilitate study of their function and biosynthesis.


Assuntos
Arabidopsis/genética , RNA de Cloroplastos/metabolismo , RNA Mitocondrial/metabolismo , RNA Ribossômico/metabolismo , RNA Nucleolar Pequeno/metabolismo , Ribose/metabolismo , Metilação , Processamento Pós-Transcricional do RNA
12.
Science ; 369(6510): 1477-1481, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32943522

RESUMO

The 90S preribosome is a large, early assembly intermediate of small ribosomal subunits that undergoes structural changes to give a pre-40S ribosome. Here, we gained insight into this transition by determining cryo-electron microscopy structures of Saccharomyces cerevisiae intermediates in the path from the 90S to the pre-40S The full transition is blocked by deletion of RNA helicase Dhr1. A series of structural snapshots revealed that the excised 5' external transcribed spacer (5' ETS) is degraded within 90S, driving stepwise disassembly of assembly factors and ribosome maturation. The nuclear exosome, an RNA degradation machine, docks on the 90S through helicase Mtr4 and is primed to digest the 3' end of the 5' ETS. The structures resolved between 3.2- and 8.6-angstrom resolution reveal key intermediates and the critical role of 5' ETS degradation in 90S progression.


Assuntos
RNA Helicases DEAD-box/química , Estabilidade de RNA , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Menores de Eucariotos/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Microscopia Crioeletrônica , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Exossomos/metabolismo , Deleção de Genes , Domínios Proteicos , RNA Ribossômico 18S/química , RNA Ribossômico 18S/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
FEBS Open Bio ; 10(11): 2437-2451, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32981237

RESUMO

Fungal α-mannosidase Ams1 and its mammalian homolog MAN2C1 hydrolyze terminal α-linked mannoses in free oligosaccharides released from misfolded glycoproteins or lipid-linked oligosaccharide donors. Ams1 is transported by selective autophagy into vacuoles. Here, we determine the tetrameric structure of Ams1 from the fission yeast Schizosaccharomyces pombe at 3.2 Å resolution by cryo-electron microscopy. Distinct from a low resolution structure of S. cerevisiae Ams1, S. pombe Ams1 has a prominent N-terminal tail that mediates tetramerization and an extra ß-sheet domain. Ams1 shares a conserved active site with other enzymes in glycoside hydrolase family 38, to which Ams1 belongs, but contains extra N-terminal domains involved in tetramerization. The atomic structure of Ams1 reported here will aid understanding of its enzymatic activity and transport mechanism.


Assuntos
Microscopia Crioeletrônica , Manosidases/ultraestrutura , Multimerização Proteica , Proteínas de Schizosaccharomyces pombe/ultraestrutura , Schizosaccharomyces/enzimologia , Sequência de Aminoácidos , Domínio Catalítico , Modelos Moleculares , Proteínas de Schizosaccharomyces pombe/química , Homologia Estrutural de Proteína , Especificidade por Substrato
14.
Nucleic Acids Res ; 48(9): 5094-5105, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32297938

RESUMO

Box C/D RNA protein complexes (RNPs) catalyze site-specific 2'-O-methylation of RNA with specificity determined by guide RNAs. In eukaryotic C/D RNP, the paralogous Nop58 and Nop56 proteins specifically associate with terminal C/D and internal C'/D' motifs of guide RNAs, respectively. We have reconstituted active C/D RNPs with recombinant proteins of the thermophilic yeast Chaetomium thermophilum. Nop58 and Nop56 could not distinguish between the two C/D motifs in the reconstituted enzyme, suggesting that the assembly specificity is imposed by trans-acting factors in vivo. The two C/D motifs are functionally independent and halfmer C/D RNAs can also guide site-specific methylation. Extensive pairing between C/D RNA and substrate is inhibitory to modification for both yeast and archaeal C/D RNPs. N6-methylated adenine at box D/D' interferes with the function of the coupled guide. Our data show that all C/D RNPs share the same functional organization and mechanism of action and provide insight into the assembly specificity of eukaryotic C/D RNPs.


Assuntos
Metiltransferases/química , Metiltransferases/metabolismo , RNA Nucleolar Pequeno/química , RNA Nucleolar Pequeno/metabolismo , Ribonucleoproteínas/metabolismo , Adenina/análogos & derivados , Chaetomium/genética , Humanos , Metilação , Conformação de Ácido Nucleico , RNA/metabolismo , Ribonucleoproteínas/química , Sulfolobus solfataricus
15.
RNA ; 26(7): 866-877, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32213618

RESUMO

Ribosomal subunits are assembled on a precursor rRNA that includes four spacers in addition to mature rRNA sequences. The 5' external transcribed spacer (5' ETS) is the most prominent one that recruits U3 snoRNA and a plethora of proteins during the early assembly of 90S small subunit preribosomes. Here, we have conducted a comprehensive mutational analysis of 5' ETS by monitoring the processing and assembly of a plasmid-expressed pre-18S RNA. Remarkably, nearly half of the 5' ETS sequences, when depleted individually, are dispensable for 18S rRNA processing. The dispensable elements largely bind at the surface of the 90S structure. Defective assembly of 5' ETS completely blocks the last stage of 90S formation yet has little effect on the early assembly of 5' and central domains of 18S rRNA. Our study reveals the functional regions of 5' ETS and provides new insight into the assembly hierarchy of 90S preribosomes.


Assuntos
Precursores de RNA/genética , RNA Fúngico/genética , RNA Ribossômico 18S/genética , Leveduras/genética , Sítios de Ligação/genética , Nucléolo Celular/genética , Processamento Pós-Transcricional do RNA/genética , RNA Ribossômico/genética , RNA Nucleolar Pequeno , Ribossomos/genética
16.
Nat Commun ; 10(1): 3911, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477730

RESUMO

Chemical cross-linking of proteins coupled with mass spectrometry analysis (CXMS) is widely used to study protein-protein interactions (PPI), protein structures, and even protein dynamics. However, structural information provided by CXMS is still limited, partly because most CXMS experiments use lysine-lysine (K-K) cross-linkers. Although superb in selectivity and reactivity, they are ineffective for lysine deficient regions. Herein, we develop aromatic glyoxal cross-linkers (ArGOs) for arginine-arginine (R-R) cross-linking and the lysine-arginine (K-R) cross-linker KArGO. The R-R or K-R cross-links generated by ArGO or KArGO fit well with protein crystal structures and provide information not attainable by K-K cross-links. KArGO, in particular, is highly valuable for CXMS, with robust performance on a variety of samples including a kinase and two multi-protein complexes. In the case of the CNGP complex, KArGO cross-links covered as much of the PPI interface as R-R and K-K cross-links combined and improved the accuracy of Rosetta docking substantially.


Assuntos
Arginina/química , Reagentes de Ligações Cruzadas/química , Lisina/química , Espectrometria de Massas/métodos , Proteínas/química , Algoritmos , Arginina/metabolismo , Lisina/metabolismo , Modelos Moleculares , Estrutura Molecular , Peptídeos/química , Peptídeos/metabolismo , Conformação Proteica , Mapas de Interação de Proteínas , Proteínas/metabolismo
17.
Cell Rep ; 26(13): 3643-3656.e7, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30917318

RESUMO

CBX4, a component of polycomb repressive complex 1 (PRC1), plays important roles in the maintenance of cell identity and organ development through gene silencing. However, whether CBX4 regulates human stem cell homeostasis remains unclear. Here, we demonstrate that CBX4 counteracts human mesenchymal stem cell (hMSC) aging via the maintenance of nucleolar homeostasis. CBX4 protein is downregulated in aged hMSCs, whereas CBX4 knockout in hMSCs results in destabilized nucleolar heterochromatin, enhanced ribosome biogenesis, increased protein translation, and accelerated cellular senescence. CBX4 maintains nucleolar homeostasis by recruiting nucleolar protein fibrillarin (FBL) and heterochromatin protein KRAB-associated protein 1 (KAP1) at nucleolar rDNA, limiting the excessive expression of rRNAs. Overexpression of CBX4 alleviates physiological hMSC aging and attenuates the development of osteoarthritis in mice. Altogether, our findings reveal a critical role of CBX4 in counteracting cellular senescence by maintaining nucleolar homeostasis, providing a potential therapeutic target for aging-associated disorders.


Assuntos
Nucléolo Celular/fisiologia , Senescência Celular/fisiologia , Homeostase , Ligases/fisiologia , Células-Tronco Mesenquimais/fisiologia , Osteoartrite/terapia , Proteínas do Grupo Polycomb/fisiologia , Animais , Proteínas Cromossômicas não Histona/metabolismo , Técnicas de Inativação de Genes , Terapia Genética , Células HEK293 , Humanos , Ligases/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Proteínas do Grupo Polycomb/genética
18.
Protein Cell ; 10(2): 120-130, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29557065

RESUMO

Assembly of eukaryotic ribosome is a complicated and dynamic process that involves a series of intermediates. It is unknown how the highly intertwined structure of 60S large ribosomal subunits is established. Here, we report the structure of an early nucleolar pre-60S ribosome determined by cryo-electron microscopy at 3.7 Å resolution, revealing a half-assembled subunit. Domains I, II and VI of 25S/5.8S rRNA pack tightly into a native-like substructure, but domains III, IV and V are not assembled. The structure contains 12 assembly factors and 19 ribosomal proteins, many of which are required for early processing of large subunit rRNA. The Brx1-Ebp2 complex would interfere with the assembly of domains IV and V. Rpf1, Mak16, Nsa1 and Rrp1 form a cluster that consolidates the joining of domains I and II. Our structure reveals a key intermediate on the path to establishing the global architecture of 60S subunits.


Assuntos
RNA Ribossômico 5,8S/química , RNA Ribossômico/química , Proteínas Ribossômicas/química , Subunidades Ribossômicas Maiores de Eucariotos/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Microscopia Crioeletrônica , Modelos Moleculares , Conformação Molecular , Domínios Proteicos
19.
PLoS One ; 13(4): e0195723, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29641590

RESUMO

The precursor ribosomal RNA is processed by multiple steps of nucleolytic cleavage to generate mature rRNAs. Utp24 is a PIN domain endonuclease in the early 90S precursor of small ribosomal subunit and is proposed to cleave at sites A1 and A2 of pre-rRNA. Here we determine the crystal structure of Utp24 from Schizosaccharomyces pombe at 2.1 angstrom resolution. Utp24 structurally resembles the ribosome assembly factor Utp23 and both contain a Zn-finger motif. Functional analysis in Saccharomyces cerevisiae shows that depletion of Utp24 disturbs the assembly of 90S and abolishes cleavage at sites A0, A1 and A2. The 90S assembled with inactivated Utp24 is arrested at a post-A0-cleavage state and contains enriched nuclear exosome for degradation of 5' ETS. Despite of high sequence conservation, Utp24 from other organisms is unable to form an active 90S in S. cerevisiae, suggesting that Utp24 needs to be precisely positioned in 90S. Our study provides biochemical and structural insight into the role of Utp24 in 90S assembly and activity.


Assuntos
Endonucleases/química , Endonucleases/metabolismo , RNA Fúngico/metabolismo , RNA Ribossômico 18S/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Endonucleases/genética , Modelos Moleculares , Processamento Pós-Transcricional do RNA , RNA Fúngico/genética , RNA Ribossômico 18S/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética
20.
Nucleic Acids Res ; 46(4): 2096-2106, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29361028

RESUMO

Ribosome biogenesis in eukaryotes is a complicated process that involves association and dissociation of numerous assembly factors and snoRNAs. The yeast small ribosomal subunit is first assembled into 90S pre-ribosomes in an ordered and dynamic manner. Efg1 is a protein with no recognizable domain that is associated with early 90S particles. Here, we determine the crystal structure of Efg1 from Chaetomium thermophilum at 3.3 Å resolution, revealing a novel elongated all-helical structure. Efg1 is not located in recently determined cryo-EM densities of 90S likely due to its low abundance in mature 90S. Genetic analysis in Saccharomyces cerevisiae shows that the functional core of Efg1 contains two helical hairpins composed of highly conserved residues. Depletion of Efg1 blocks 18S rRNA processing at sites A1 and A2, but not at site A0, and production of small ribosomal subunits. Efg1 is initially recruited by the 5' domain of 18S rRNA. Its absence disturbs the assembly of the 5' domain and inhibits release of U14 snoRNA from 90S. Our study shows that Efg1 is required for early assembly and reorganization of the 5' domain of 18S rRNA.


Assuntos
Chaetomium , Proteínas Fúngicas/química , Proteínas Fúngicas/fisiologia , Proteínas Ribossômicas/química , Proteínas Ribossômicas/fisiologia , Cristalografia por Raios X , Modelos Moleculares , Processamento Pós-Transcricional do RNA , RNA Ribossômico 18S/metabolismo , RNA Nucleolar Pequeno/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Ribossomos/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...